Exercise 51

If g is a differentiable function, find an expression for the derivative of each of the following functions.
(a) $y=x g(x)$
(b) $y=\frac{x}{g(x)}$
(c) $y=\frac{g(x)}{x}$

Solution

Use the product rule to differentiate the function in part (a).

$$
y^{\prime}=\frac{d}{d x}[x g(x)]=\left[\frac{d}{d x}(x)\right] g(x)+x g^{\prime}(x)=(1) g(x)+x g^{\prime}(x)=g(x)+x g^{\prime}(x)
$$

Use the quotient rule to differentiate the function in part (b).

$$
y^{\prime}=\frac{d}{d x}\left[\frac{x}{g(x)}\right]=\frac{\left[\frac{d}{d x}(x)\right] g(x)-g^{\prime}(x)(x)}{[g(x)]^{2}}=\frac{(1) g(x)-g^{\prime}(x)(x)}{[g(x)]^{2}}=\frac{g(x)-x g^{\prime}(x)}{[g(x)]^{2}}
$$

Use the quotient rule to differentiate the function in part (c).

$$
y^{\prime}=\frac{d}{d x}\left[\frac{g(x)}{x}\right]=\frac{g^{\prime}(x) x-\left[\frac{d}{d x}(x)\right] g(x)}{x^{2}}=\frac{g^{\prime}(x) x-(1) g(x)}{x^{2}}=\frac{x g^{\prime}(x)-g(x)}{x^{2}}
$$

